

Measuring transducer for active or reactive power

EW 4.0, DGW 4.0, VGW 4.0, DUW 4.0, VUW 4.0, EB 4.0 DGB 4.0, VGB 4.0, DUB 4.0, VUB 4.0

Application

The power measuring transducers of the 4.0 series in a compact design convert active or reactive power into an impressed direct current and an impressed direct voltage with the correct sign. These can then be displayed, registered and/or used for control at the measuring site or in measuring stations located further away.

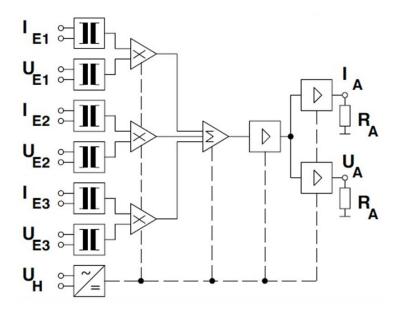
The range of measuring transducers for active or reactive power includes types for single-phase alternating current networks (EW/EB) as well as for three- or four-wire three-phase networks with the same or any load (DGW/B, DUW/B or VGW/B, VUW/B).

Several evaluation devices (indicators, controllers, computers, etc.) can be connected simultaneously up to the maximum or minimum permissible load.

Power is supplied via a separate auxiliary power input. Input, output and the auxiliary voltage input are galvanically isolated from each other. The outputs are short-circuit-proof and idle-proof.

The measuring transducers are intended for installation in plants, devices or switchboards. The regulations regarding the construction of those electrical systems must be observed.

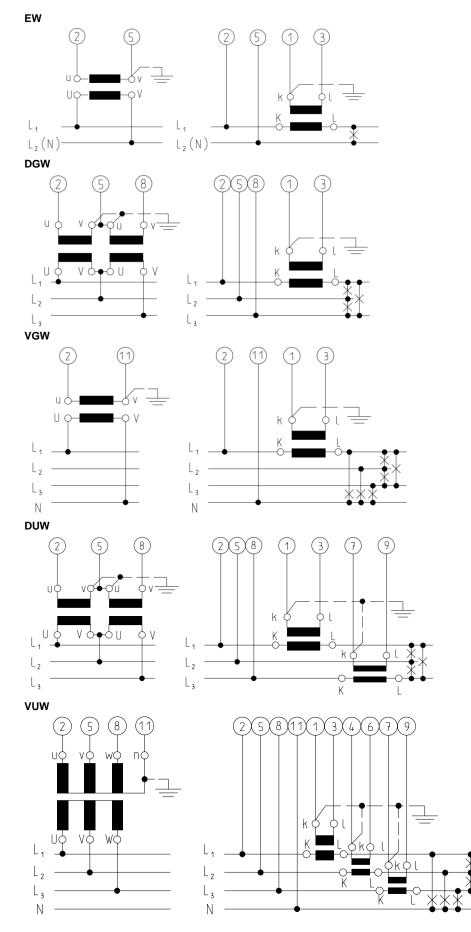
Working principle


Measuring transducers for active and reactive power work with an integrated analog multiplier. The two converters in the current and voltage path galvanically isolate the power circuits from the electronics and adapt the input current and input voltage to the multiplier, which multiplies the measured values analogously and integrates them with a low pass.

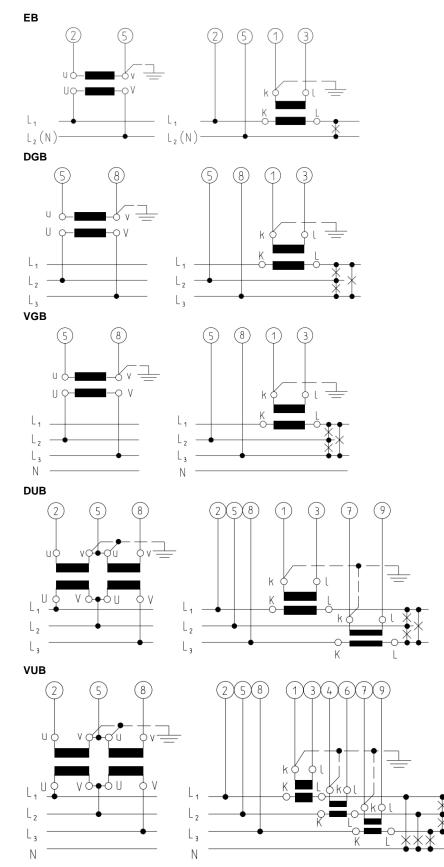
The real 3-phase recording of the current and voltage values ensures absolutely correct measurement results within the specified accuracy class in all operating states of the network.

For any load in three-phase networks, the product of voltage and current is formed by two or three multipliers.

An integrated voltage-current converter provides the output variables in the form of an impressed direct current and an impressed direct voltage.


Block circuit diagram

notice: Input, outputs and auxiliary voltage are galvanically isolated from each other.


Connection diagrams

Page 3 from 12

Connection diagrams

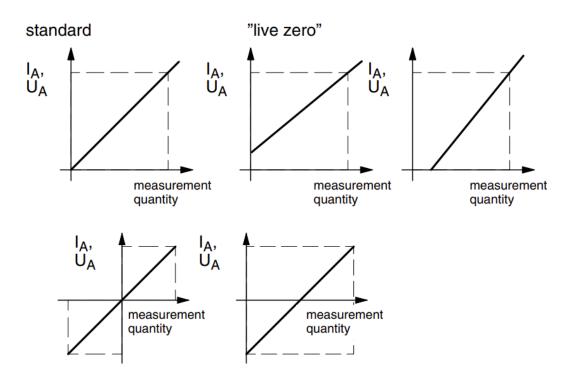
Inputs

Input quantity	Sinusoidal or non-sinusoidal AC current and AC voltage	
Measurable quantity PE	Active or Reactive power	
	Active power	Reactive power
Single-phase AC network Three-wire three-phase system balanced load Four-wire three-phase system balanced load Three-wire three-phase system unbalanced load Four-wire three-phase system unbalanced load	EW DGW VGW DUW VUW	EB DGB VGB DUB VUB
Measuring range	0 PN or – PN 0 PN = (0.3 1.2) U x	
The apparent power Ps results from the primary values	s of current and voltage	transformers
Single-phase AC network Three-phase network Rated input voltage UEN Rated input current IEN Operating voltage	PS = U x I PS = v3·x U·x I 0 50 519 V 0 0.5 5 A max. 519 V	
Permissible control range Overload limit	1.2 UEN or 1.2 IEN 1.2 UEN, 1.2 IEN continuous 2 UEN, 20 IEN max. 1 s \leq 5 A, 20 IEN max. 1 s > 5 A, 12,5 IEN max. 1 s	
Rated frequency range	45 62 Hz total harmonic distortion \leq 0,2 (all types, except EB) Type EB: 50 Hz <u>or</u> 60 Hz, total harmonic distortion \leq 0,2	
Power consumption	approx. 1 mA per volta < 0.1 VA per current p < 0.4 VA per current p < 0.8 VA per current p	oath at 1 A input oath at 5 A input

Outputs

Current output

Output current IA Rated current IAN Burden area RA Current limitation


Voltage output Output voltage UA Rated voltage UAN Burden RA Burden error

Residual ripple Setting time Open circuit voltage impressed DC current 0 ... 20 mA or 4 ... 20 mA 0 ... 10 V / IAN to approx. 37 mA

impressed DC voltage $0 \dots 10 \vee \text{or } 2 \dots 10 \vee$ $\ge 4 \text{ k}\Omega$ $\le 0.1 \%$ based on 50 % load change

≤ 1 %eff approx. 500 ms ≤ 15 V

Conversion characteristics

Auxiliary voltages

Auxiliary voltage

Power consumption

20 100 V= or 20 70 V~	< 3 VA
36 265 V= or 36265 V~	< 6 VA

Terminal assignment

EW/EB	DGW	VGW	DGB/VGB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c} \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ \bigcirc & \bigcirc &$	$\bigcirc \bigcirc 0 0 0 0 0 0 0 0$	0 0 0 0 0 0 2 0 17 16 11	○ ○ ○ ○ ○ ○ ○ ○ 17 16 8

Clamp	EW/EB	DGW	VGW	DGB	VGB
1	I _E L ₁				
2	U _E L ₁	U _E L ₁	U _E L ₁	_	-
3	I _E L ₁				
5	$U_E L_2$	U _E L ₂	_	U _E L ₂	$U_E L_2$
8	-	U _E L ₃	_	U _E L ₃	U _E L ₃
11	-	-	U _E N	-	-
13	U _A (+)				
14	U _A (-)	U _A (–)	U _A (–)	U _A (–)	U _A (–)
16	U _H L ₁ (+)				
17	U _H N (–)				
19	I _A (+)	I _A (+)	I _A (+)	I _A (+)	l _A (+)
20	I _A (–)				

Ue Voltage input

The numbers on the terminals correspond to details in the Connection diagrams (according to DIN 43 807).

ΙA Current output

Voltage output Auxiliary voltage input Ua Uh

Caution: The two outputs must not be connected to each other! If only the voltage output is connected, terminals 19 and 20 (current output) must be bridged!

Terminal assignment

DUW	DUB	VUW	VUB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\bigcirc \bigcirc $	$\bigcirc \bigcirc $		

Clamp	DUW	VUW	DUB	VUB
1	I _E L ₁			
2	U _E L ₁			
3	I _E L ₁			
4	1	I _E L ₂	1	I _E L ₂
5	$U_E L_2$	$U_E L_2$	$U_E L_2$	$U_E L_2$
6	-	$I_E L_2$	-	$I_E L_2$
7	I _E L ₃			
8	$U_E L_3$	$U_E L_3$	U _E L ₃	U _E L ₃
9	I _E L ₃	I _E L ₃	$I_E L_3$	I _E L ₃
11	1	U _E N	Ι	1
13	U _A (+)	U _A (+)	U _A (+)	U _A (+)
14	U _A (–)	U _A (–)	U _A (–)	U _A (–)
1 <mark>6</mark>	U _H L ₁ (+)			
17	U _H N (–)			
19	I _A (+)	I _A (+)	I _A (+)	I _A (+)
20	I _A (–)	I _A (–)	I _A (–)	I _A (–)

lΕ Current input

UE	Voltage input
	The numbers on the terminals correspond to details in the
	Connection diagrams (according to DIN 43 807).
IA	Current output
11.	

Voltage output Auxiliary voltage input Ua Uh

Caution:

The two outputs must not be connected to each other! If only the voltage output is connected, terminals 19 and 20 (current output) must be bridged!

Preference types:

IEN (A)		PEN (kW)		
		EW/EB	DGW/B VGW/B DUW/B VUW/B	
		Calibration factor 0.87	Calibration factor 0.72	
directly 1	1/5	0.2	0.5	
5/1	directly 5	1	2.5	
10/1	10/5	2	5	
15/1	15/5	3	7.5	
20/1	20/5	4	10	
25/1	25/5	5	12.5	
30/1	30/5	6	15	
40/1	40/5	8	20	
50/1	50/5	10	25	
60/1	60/5	12	30	
75/1	75/5	15	37.5	
80/1	80/5	16	40	
100/1	100/5	20	50	
120/1	120/5	24	60	
150/1	150/5	30	75	
200/1	200/5	40	100	
250/1	250/5	50	125	
300/1	300/5	60	150	
400/1	400/5	80	200	
500/1	500/5	100	250	
600/1	600/5	120	300	
750/1	750/5	150	375	
800/1	800/5	160	400	
1000/1	1000/5	200	500	
and decadal	and decadal	and decadal	and decadal	
Multiples	Multiples	Multiples	Multiples	

The table below lists standard measuring ranges for voltages of 230/400 V and current ratings N/1 A or N/5 A.

Types in this preferred series offer advantages for the user in that they are calibrated to the same secondary value (calibration factor 0.87 or 0.72).

This means that they are interchangeable within the listed converter connection values and the resulting performance; recalibration is not necessary. However, the nameplate should be changed.

Example:

A system with 230/400 V and a current transformer of 250 A, a power output of 125 kW is calculated for a VUW measuring transducer.

The apparent power (cos =1) for this network would be:

 $Ps = U \bullet I \bullet \sqrt{3} \bullet \cos\varphi$ $Ps = 400 V \bullet 250 A \bullet \sqrt{3} \bullet 1$ Ps = 173 kW

multiplied by a calibration factor of 0.72 results in PEN = 125 kW (see table). If the current transformer connection is changed to 400 A, for example, the power is calculated as follows:

PEN = U • I• $\sqrt{3}$ • 0.72 PEN = 400 V • 400 A • $\sqrt{3}$ • 0.72 PEN = 200 kW (see table)

General technical data

Case design	Surface-mounted housing for snap on DIN rail TH 35 according to DIN	
Case material	ABS/PC black self-extinguishing according to UL	94 V–0
Connections	Screw terminals	
Wire cross section	max. 4mm ²	
Protection class	IP 40 housing IP 20 terminals	
Test voltages	All circuits against housing: 3510 Measuring circuit and auxiliary volt Currents against each other and a	age against output: 3510 Veff 5 sec
Operating voltage	300 V (rated voltage phase-zero)	
Protection class	II	
Measurement category	CAT III	
Pollution level	2	
Dimensions	EW EB VGW VGB DGW DGB 45mm x 80mm x 115mm	DUW DUB VUW VUB 67.5mm x 80mm x 115mm
Weights:	EW EB VGW VGB DGW DGB approx. 0.25 kg	DUW DUB VUW VUB approx. 0.43 kg

Accuracy at reference conditions

Accuracy class	0.5 (± 0.5 % of end value)
Temperature drift	≤ 0.02 %/K, valid for standard version and max. 1 year

Reference conditions

Input voltage Power factor Frequency Auxiliary voltage Ambient temperature Warm-up time UEN ± 2 % Active power cos φ =1.0 to 0.8 ; Reactive power sin φ = 1.0 to 0.8 45 ...62 Hz ± 1 %, harmonic content 0.05 (except type EB: only 50 Hz <u>or</u> 60 Hz) UHN ± 2 %, 50 ... 60 Hz 23 °C ±1 K ≤ 5 mins

Environmental conditions

 User group I
 Transducer class K55

 Operating temperature range
 -20 ... +55 °C

 Storage temperature range
 -25 ... +70 °C

 Relative humidity
 ≤ 75 % annual average, none condensation, only indoor use

Ordering guide

Order number	Measuring transducer for active or reactive power series 4.0
	Active power
PMU10-1	EW 4.0 single-phase AC network
PMU11-1	DGW 4.0 three-wire three-phase network with the same load
PMU12-1	DUW 4.0 three-wire three-phase network of any load
PMU13-1	VGW 4.0 four-wire three-phase network with the same load
PMU14-1	VUW 4.0 four-wire three-phase network of any load
PMU19-1	Reactive power EB 4.0 single-phase AC network
PMU15-1	DGB 4.0 three-wire three-phase network with the same load
PMU15-1 PMU16-1	DUB 4.0 three-wire three-phase network of any load
PMU17-1	VGB 4.0 four-wire three-phase network with the same load
PMU18-1	VUB 4.0 four-wire three-phase network of any load
	Current input (if used specify primary values)
1	1 A
5	5 A
9	special current input up to max. 8 A
	Voltage input (if used specify primary values)
1	57,5 V
2	63,5 V
3	100 V
4	110 V
5	115 V
6	120 V
7	230 V
8	240 V
9	special voltage input
A	380 V (max. 300 V nominal mains voltage phase-zero)
В	400 V (max. 300 V nominal mains voltage phase-zero)
С	415 V (max. 300 V nominal mains voltage phase-zero)
D	440 V (max. 300 V nominal mains voltage phase-zero)
E	500 V (max. 300 V nominal mains voltage phase-zero)
	Measuring ranges
1	as specified
	Frequency range input
2	4862 Hz (all types except EB)
9	special frequency
A	50 Hz (only EB)
В	60 Hz (only EB)
	Output
1	Output 020 mA and 010 V
2	010 mA and 010 V
3	05 mA and 010 V
4	420 mA and 210 V
5	-20020 mA and -10010 V
9	special output
3	
	Auxiliary supply
4	DC 20100 V / AC 2070 V
5	DC 36265 V / AC 36265 V
-	
	Manufacturing certificate
0	without
1	with

Guidelines and standards

Directive 2014/30/EU Directive 2014/35/EU	EMC Directive Low Voltage Directive
Directive 2011/65/EU	RoHS Directive
DIN EN 60529	Protection types through housing
DIN EN 60688	measuring transducer for converting alternating current variables into analog or digital signals
DIN EN 60715	Dimensions of low-voltage switching devices
	Standardized mounting rails for the mechanical fastening of electrical devices in switchgear
DIN EN 61010-1	Safety regulations for electrical measuring, control, regulation and laboratory devices
	Part 1: General requirements
DIN EN 61326-1	Electrical measuring, control, regulating and laboratory devices - EMC requirements -
	Part 1: General requirements
	61000-4-3 Evaluation criterion B

Safety regulations and general information

- Check the relevant details for installation of the Measuring transducer against the nameplate and the terminal connections to ensure that they are suitable for your area of application.
- The Measuring transducer may only be installed by qualified electricians.
 - The Measuring transducer must be checked for transport damage before commissioning and may only be put into operation if it is in perfect condition. In case of safety-relevant damages the Measuring transducer may not be put into operation.
- Ensure that the connections match the terminal connections.
- Circuits must be fused for the maximum permissible currents.

- When commissioning and using the Measuring transducer, the applicable laws, regulations and provisions for the respective area of use and application must be observed.
- The Measuring transducer is not suitable for use in environments with explosive gases or explosive substances
- The Measuring transducer may only be operated in the environmental and ambient conditions specified in the data sheet. Direct sunlight must be avoided.
- The Measuring transducer may only be installed on non-flammable materials. The applicable fire protection regulations in the area of use and application must be observed.
- Due to the operating voltage, the distance or insulation from other devices must be observed in accordance with the applicable regulations.
- Stranded cables are only permitted if they are fitted with wire end sleeves.
- Connecting cables must be laid away from electromagnetic interference fields.
- Dangerous electrical voltage (more than 75 V DC or more than 50 V AC) can lead to electric shock and burns.
- The Measuring transducer must always be disconnected when fitting, removing, installing, uninstalling or troubleshooting.
 - The Measuring transducer is maintenance-free when used as intended.
 - Improper use and non-compliance with these safety instructions can lead to serious injury or even death.

Weigel Meßgeräte GmbH

Am Farrnbach 4a D-90556 Cadolzburg

Phone: +49 9103 / 62694-0 www.weigel-messgeraete.de info@weigel-messgeraete.de

Technical changes reserved (12/2024)

